
CNT 4603: Python – Part 1 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Spring 2012

Python – Part 1

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 4078-823-2790

 http://www.cs.ucf.edu/courses/cnt4603/spr2012

CNT 4603: Python – Part 1 Page 2 Dr. Mark Llewellyn ©

What Is Python?

• Python is an elegant and robust programming language that

delivers both the power and general applicability of traditional

compiled languages with the ease of use of simpler scripting and

interpreted languages.

• Python originated in late 1989 at the National Research Institute

for Mathematics and Computer Science in the Netherlands by

Guido van Rossum, with its first public release coming in early

1991.

• Van Rossum was doing research in system administration at the

time and found most conventional programming languages too

cumbersome or incomplete to perform the work he envisioned.

He was working on automating system administration tasks and

thus needed access to the power of system level calls.

CNT 4603: Python – Part 1 Page 3 Dr. Mark Llewellyn ©

What Is Python?

• Van Rossum was working on an Amoeba distributed operating

system at the time and gave serious consideration to developing

an Ameoba-specific language to further his research. In the end

he decided to go with a generalized language and Python was

born.

• Although Python has now been around for about 20 years, many

people feel that it is still relatively new to the general software

development industry.

• The next few pages will illustrate some of the primary features of

Python and why it has become a valuable tool for system

administrators.

CNT 4603: Python – Part 1 Page 4 Dr. Mark Llewellyn ©

Main Features Of Python

• Python is a high level programming language. The hierarchy of

languages takes you from very low-level machine languages

through assembly languages to languages like Fortran, C, and

Pascal. These latter three languages are primarily responsible for

creating the software development industry. The language C was

responsible for generating the modern version of compiled

languages like C++ and Java. Even higher-level languages

which are powerful system-accessible and interpreted languages

like Python, Perl, and Ruby.

• These very high-level languages provide data structures that

reduce the “framework” development time that was required in

earlier languages. Useful types such as Python’s lists (resizable

arrays), and dictionaries (hash tables) are built into the language.

CNT 4603: Python – Part 1 Page 5 Dr. Mark Llewellyn ©

Main Features Of Python

• Python is an object-oriented language, which adds another

dimension to structured and procedural languages (like C) where

data and logic are discrete elements of programming. OO allows

for associating specific behaviors, characteristics, and/or

capabilities with the data that they execute on or are

representative of.

• Python is often compared to batch or Unix shell scripting

languages. Unix shell scripts handle simple tasks and there is

little chance for code reusability amongst scripts. However, this

is not true of Python, which allows for easy code reuse. This

makes Python a scalable language through modular design

capabilities.

CNT 4603: Python – Part 1 Page 6 Dr. Mark Llewellyn ©

Main Features Of Python

• Python is highly portable. This is because Python is written in C

and C is an extremely portable. Any platform with an ANSI C

compiler is capable of running Python.

• Python is easy to learn as it has relatively few keywords, a simple

structure, and a clearly defined syntax.

• The simple syntax enhances the readability of Python code which

makes it easier to write initially, and to maintain over the long

term.

• Python is a robust language in that it makes it easy to identify and

catch errors in your software. This robustness helps not only the

program developer but also the end user.

CNT 4603: Python – Part 1 Page 7 Dr. Mark Llewellyn ©

Downloading And Installing Python

• The most obvious place to get all Python-related software is at

http://python.org.

• Right now there are two current production versions of Python

available, versions 2.7.2 and 3.2.2. This is a common occurrence

with Python and if in doubt about which version to download, the

older version will almost always have more compatibility with

third party software than the newer version which requires some

lead time before third party vendors can catch up with new

developments in the language.

• I have both versions on my systems at the moment so that I can

point out a few of the relevant differences as we move through

our look at Python.

http://python.org/
http://python.org/
http://python.org/
http://python.org/
http://python.org/

CNT 4603: Python – Part 1 Page 8 Dr. Mark Llewellyn ©

Running Python

• Download your preferred version of Python and install it

accordingly on your system.

• Once you’ve downloaded Python there are three different ways to

start it running.

• The simplest way is to start the interpreter interactively, entering

one line of Python at a time for execution. This is illustrated on

page 9.

• The next way is to run a script written in Python by invoking the

interpreter on the script. To do this, first create the script file

using a text editor, then simply click on the script file to execute

it. This is illustrated on page 10.

CNT 4603: Python – Part 1 Page 9 Dr. Mark Llewellyn ©

Running Python

Running Python interactively

From your Program listing you should find a

Python command line interpreter once you’ve

downloaded and installed Python. This is what is

shown here.

Notice that in this environment the commands

appear on a single line. If the command is

separated across lines then it must be enclosed in

parentheses or an error is generated.

CNT 4603: Python – Part 1 Page 10 Dr. Mark Llewellyn ©

Running Python

Create the Python Script then click on the file name

in the directory where the script it stored.

CNT 4603: Python – Part 1 Page 11 Dr. Mark Llewellyn ©

Running Python

• The final way to run Python is through an IDE.

• Current versions of Python come with an IDE called IDLE

(Python GUI), which looks like:

The Python IDLE environment.

CNT 4603: Python – Part 1 Page 12 Dr. Mark Llewellyn ©

Running Python

The Python IDLE can be

found in your

PythonXX/Lib/idlelib

folder as shown below.

Double click on the

batch file to run the IDE.

CNT 4603: Python – Part 1 Page 13 Dr. Mark Llewellyn ©

Running Python

• Most of the more commonly used IDE also can be set-up for

incorporating Python development.

• I use Eclipse mostly for Python development and I’ve put

together another set of notes (available on the course website) that

will step you through the process of configuring Eclipse for

Python. There are several steps that need to be done, but it’s a

fairly straightforward process and Eclipse ultimately provides a

good development environment for Python scripting.

• The next page illustrates the Python perspective in Eclipse.

CNT 4603: Python – Part 1 Page 14 Dr. Mark Llewellyn ©

The Eclipse Python perspective.

CNT 4603: Python – Part 1 Page 15 Dr. Mark Llewellyn ©

Python Basics

• Now that you’ve set-up Python and tried out the various ways to

run Python, its time to learn the basics of the language so that you

can write Python programs or scripts to accomplish some task.

• Comments in Python are delimited by the hash mark (#) (pound

sign). Any text following a # is ignored by the interpreter.

• Multiple line comments will require a # at the start of each line.

• There are also special comments called documentation strings or

“doc strings” for short that typically appear at the beginning of a

Python module, a feature which should be familiar to Java

programmers.

– Unlike regular comments, doc strings are accessible at runtime and are

used to automatically generate documentation.

CNT 4603: Python – Part 1 Page 16 Dr. Mark Llewellyn ©

Python Basics

• The standard mathematical operators that you are familiar with

work the same way in Python as in most other languages.

• Python supports: +, -, *, / , //, %, and ** (the double slash

division operator is floor division, in which the division result is

rounded down to the nearest whole number).

• Operator precedence is also what you would normally expect.

• Python also supports the normal set of comparison operators: <,

<=, >, >=, ==, and != which all return boolean values.

• The following example illustrates a few of these, but look closely

at the very last example, which is a Python-specific shorthand that

would be equivalent to 3 < 4 and 4 < 5.

CNT 4603: Python – Part 1 Page 17 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 18 Dr. Mark Llewellyn ©

Python Basics - Variables

• The rules for variable naming in Python are much the same as in

most other high-level languages inspired by C.

• The variable name must begin with a letter or underscore

character and can include any number of letters, digits, or

underscores.

• In particular no spaces are allowed in a variable name.

• Python is case sensitive.

• The assignment operator is =.

CNT 4603: Python – Part 1 Page 19 Dr. Mark Llewellyn ©

Python Basics – Operators And Data Types

• Unlike many high-level languages, Python does not support

prefix and postfix increment operators, e.g., ++n or n++. This is

because + and – are also unary operators.

• Python would interpret -–n and –(-n) = n.

• Python is dynamically typed, meaning that no pre-declaration of a

variable or its type in necessary. The type and value are

initialized on assignment.

• Python supports five basic numeric types:

– int, long, bool

– float, complex

CNT 4603: Python – Part 1 Page 20 Dr. Mark Llewellyn ©

Python Basics - Strings

• Strings in Python are identified as a contiguous set of characters

in between quotation marks. Python allows for either pairs of

single or double quotes.

• Triple quotes (three consecutive singe or double quotes) can be

used to escape special characters.

• Subsets of strings can be taken using the index ([]) and

slice ([:]) operators, which work with indices starting

at 0 in the beginning of the string and working their way from -1

at the end.

• The plus (+) sign is the string concatenation operator and the

asterisk (*) is the repetition operator.

• Examples of these are shown on the next page.

CNT 4603: Python – Part 1 Page 21 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 22 Dr. Mark Llewellyn ©

Python Basics - Lists

• Lists and tuples can be thought of as generic arrays which hold an

arbitrary number of arbitrary Python objects.

• The items are ordered and accessed via index offsets, similar to

arrays, except that lists and tuples can store different types of

objects.

• Lists are enclosed in brackets ([]) and their elements and size

can be changed.

• Tuples are enclosed in parentheses (()) and cannot be

updated. Think of a tuple as a “read-only” list.

• Subsets can be taken with the index and slice operator in the same

manner as for strings. The example on the next page illustrates

both lists and tuples.

CNT 4603: Python – Part 1 Page 23 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 24 Dr. Mark Llewellyn ©

Python Basics - Dictionaries

• Dictionaries (or “dicts” for short) are Python’s mapping type and

work like associative arrays or hashes found in Perl.

• They are made up of key-value pairs. Keys can be almost any

Python type, but are most commonly numbers or strings. Values,

on the other hand, can be any arbitrary Python object.

• Dicts are enclosed by curly braces ({ }).

• The next page shows an example that uses dicts.

CNT 4603: Python – Part 1 Page 25 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 26 Dr. Mark Llewellyn ©

Python Basics – Code Blocks

• Unlike many high-level languages which use a variety of curly

braces or straight braces to denote code blocks, Python uses only

indentation. The lack of extra symbols makes Python code easier

to read and thus manage.

• While code blocks typically consist of many statements, recall

that it is also possible for them to consist of a single statement.

Indentation must be used in the single statement case as well.

CNT 4603: Python – Part 1 Page 27 Dr. Mark Llewellyn ©

Python Basics – if statement

• The standard if conditional statement has the following syntax

in Python:

 if expression:

 if_suite

• If the expression is non-zero or True, then the statement

if_suite is executed; otherwise, execution continues at the

first statement after the if statement.

• Suite is the term used in Python to refer to a sub-block of code.

CNT 4603: Python – Part 1 Page 28 Dr. Mark Llewellyn ©

Python Basics – if-else statement

• Python also supports an else statement that is used with an if

statement using the following syntax:

 if expression:

 if_suite

 else:

 else_suite

• If the expression is non-zero or true, then the statement

if_suite is executed; otherwise, the else_suite is

executed. In both cases execution continues at the first statement

after the if-else statement.

CNT 4603: Python – Part 1 Page 29 Dr. Mark Llewellyn ©

Python Basics – elif statement (else-if)

• Python also supports an “else-if” statement spelled as elif using

the following syntax:

 if expression1:

 if_suite

 elif expression2:

 elif_suite

 else:

 else_suite

CNT 4603: Python – Part 1 Page 30 Dr. Mark Llewellyn ©

Python Basics – while loop

• Python also a while loop statement which executes as you would

expect. The syntax of the while statement is:

 while expression:

 while_suite

• The statement(s) in the while_suite are executed

continuously until the expression becomes zero or false;

execution then continues with the first statement after the while

statement.

• The next page shows a simple while statement example.

CNT 4603: Python – Part 1 Page 31 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 32 Dr. Mark Llewellyn ©

Python Basics – for loop

• The for loop in Python is more like a foreach iterative-type

loop in a shell scripting language than a traditional for

conditional loop that works like a counter.

• Python’s for takes an iterable (such as a sequence or iterator) and

traverses each element once.

• The for loop can take on several different variants in Python when

augmented with functions. In particular the built-in function

range() is often used with the for statement to make it act

more like a traditional counted loop.

• The example on the next page, illustrates a typical Python for

loop acting much like a foreach loop.

CNT 4603: Python – Part 1 Page 33 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 34 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 35 Dr. Mark Llewellyn ©

Python Basics – for loop

• The following two examples illustrate the for loop in Python

acting more like a traditional counted loop.

• The first example explicitly specifies the iterable set of values that

drive the loop.

• The second example uses the built-in function range() to generate

the upper end of the iterable set.

CNT 4603: Python – Part 1 Page 36 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 37 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 38 Dr. Mark Llewellyn ©

Slightly different use of range()

function to create values outside

of the for loop and then use

those range values (albeit

somewhat modified, .e.g.

squared) in the subsequent for

statement.

CNT 4603: Python – Part 1 Page 39 Dr. Mark Llewellyn ©

Python Basics – Files

• Once you are comfortable with a new language’s syntax; one of the

more important aspects of the language that you need to learn is how

to access files. Persistent storage really allows you to get some work

done.

• Python includes a function open() with the following syntax for

opening files:

 handle = open(filename, mode)

• There are a couple of lesser used variants of this function, but this one

will suffice for now. The function returns a file object (a handle to the
file) specified by the filename argument and is opened according to

the mode specified. The mode options are: r for reading (the default

case), w for writing, a for appending, and r+ for reading and writing.

Files are opened by default in text mode using a UTF-8 encoding.

CNT 4603: Python – Part 1 Page 40 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 41 Dr. Mark Llewellyn ©

An alternative approach to the

previous example. In this case

the file is opened, all lines read,

the file closed, and then the lines

from the file are printed.

CNT 4603: Python – Part 1 Page 42 Dr. Mark Llewellyn ©

Python Basics – Files

• The following example shows the creation of a file using the w mode

for writing to a file. By default, the file is created in the default

directory if it does not exist, and is overwritten if it already exists.

• This simple example simply takes input from the console provided by

the user, one line at a time and enters it into the file.

• You’ll need to be able to both write and read files for an upcoming

Python scripting project, so you might want to try both of these

examples on your system.

CNT 4603: Python – Part 1 Page 43 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 1 Page 44 Dr. Mark Llewellyn ©

